E-compactness and the Alexandrov duplicate
نویسندگان
چکیده
منابع مشابه
On Fuzzy $e$-open Sets, Fuzzy $e$-continuity and Fuzzy $e$-compactness in Intuitionistic Fuzzy Topological Spaces
The purpose of this paper is to introduce and study the concepts of fuzzy $e$-open set, fuzzy $e$-continuity and fuzzy $e$-compactness in intuitionistic fuzzy topological spaces. After giving the fundamental concepts of intuitionistic fuzzy sets and intuitionistic fuzzy topological spaces, we present intuitionistic fuzzy $e$-open sets and intuitionistic fuzzy $e$-continuity and other results re...
متن کامل“investigating the relationship between knowledge management and customer satisfaction considering to the e-services”
چکیده : این مطالعه تاثیر مدیریت دانش بر رضایتمندی مشتریان با توجه به خدمات الکترونیک در سازمان حمل و نقل و پایانه های استان سیستان و بلوچستان را مورد بررسی قرار می دهد. جامعه آماری این تحقیق مدیران، سرپرستان و کارشناسان مشغول به کار در سازمان حمل و نقل و پایانه های استان سیستان و بلوچستان بوده که مجموعا 94 نفر می باشند. برای تعیین حداقل نمونه از جدول مورگان استفاده شده است. که با توجه به جدول ...
Compactness of the Bounded Closed Subsets of E 2
For simplicity, we adopt the following convention: a, b denote real numbers, r denotes a real number, i, j, n denote natural numbers, M denotes a non empty metric space, p, q, s denote points of E2 T, e denotes a point of E2, w denotes a point of En, z denotes a point of M, A, B denote subsets of En T, P denotes a subset of E2 T, and D denotes a non empty subset of E2 T. One can prove the follo...
متن کاملCompactness of the Bounded Closed Subsets of E 2 T
For simplicity, we use the following convention: a, b are real numbers, r is a real number, i, j, n are natural numbers, M is a non empty metric space, p, q, s are points of E2 T, e is a point of E2, w is a point of En, z is a point of M , A, B are subsets of En T, P is a subset of E2 T, and D is a non empty subset of E2 T. One can prove the following propositions: (2) a − 2 · a = −a. (3) −a + ...
متن کاملA Problem of Alexandrov
0 Introduction For n 2, Let M n be a nite convex, not necessarily smooth, hypersur-face in Euclidean space R n+1 containing the origin. More precisely, M n is the boundary of some convex domain in R n+1 containing a neighborhood of the origin. We write M n = fR(x) = (x)x j x 2 S n g, where is a function from S n to R +. Let : M n ! S n denote the generalized Gauss map, namely, (Y) is the set of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1970
ISSN: 1385-7258
DOI: 10.1016/s1385-7258(70)80004-x